Licht ins Dunkel bringen
Das Phänomen ist bekannt, die Antwort darauf wird gesucht: Warum altert Silizium und sinkt die Stromausbeute dünner, amorpher Siliziumschichten in den ersten tausend Betriebsstunden stetig? Wissenschaftler aus fünf Instituten, die sich im Verbundprojekt EPR-Solar zusammengeschlossen haben, wollen diesem Geheimnis nun mit mithilfe der EPR-Spektroskopie auf die Spur kommen.
Arbeit im EPR-Labor.
###newpage###
Gefördert wird das Forschungsprojekt seit Anfang letzten Jahres durch das Bundesforschungsministerium (BMBF). Nun wurden rund 1,6 Mio. Euro zusätzlich bereitgestellt. Mit diesen Mitteln wollen Wissenschaftler vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) um Klaus Lips und Alexander Schnegg ein spezielles Hochfeld-Spektrometer finanzieren. Sie werden damit das erste Labor weltweit sein, das mit einem solchen Messgerät der neuesten Generation ausgestattet ist.
"Das ist großartig. Mit diesem Gerät werden wir Einzelheiten über die innere Struktur des Siliziummaterials erfahren, die uns bislang nicht zugänglich sind", freut sich Klaus Lips, der Koordinator des EPR-Solar-Projekts. Neben dem HZB sind an dem Netzwerkprojekt beteiligt: das Forschungszentrum Jülich, die Freie Universität Berlin, das Max-Planck-Institut für Eisenforschung und die TU München.
Spezielle Probenhalterungen
Das Erfolgsrezept der Solarzelle ist ihre Fähigkeit, Sonnenlicht direkt in elektrischen Strom umzuwandeln. Das funktioniert, weil im Inneren des Materials Ladungsträger erzeugt werden, die ihre Energie durch das Sonnenlicht erhalten und sich dann wie kleine Fahrzeuge durch die Solarzelle bewegen, bis sie in einen Stromkreis eingespeist werden. Allerdings verschwinden in den heutigen Solarzellen einige Ladungen unterwegs, sodass der Wirkungsgrad und somit der Gebrauchswert der Solarzelle sinkt.
###newpage###
Für die Solarindustrie ist dies ein echtes Problem, das unbedingt gelöst werden muss - gerade weil die Produktionskapazität für Silizium-Dünnschichtzellen derzeit stetig erhöht wird.
Ursache für das Verschwinden der Ladungsträger sind Materialfehler in der Halbleiterstruktur. Um diese erkennen und vermeiden zu können, müssen die Forscher die innere Struktur der Solarzelle mit einer Genauigkeit von weniger als einem Millionstel Millimeter vermessen.
Bei der EPR-Spektroskopie (EPR steht für Elektronenparamagnetische Resonanz) nutzen sie dazu eine besondere quantenmechanische Eigenschaft geladener Teilchen, ihren Eigendrehimpuls (Spin). Wird der Spin einem Magnetfeld ausgesetzt, verhält er sich wie eine mikroskopische Kompassnadel und richtet sich parallel zu dem Magnetfeld aus. Nun wird die Probe mit Mikrowellen bestrahlt. Bei ganz bestimmten Magnetfeldern tritt ein Resonanzeffekt ein, bei dem sich die Kompassnadeln um 180 ° drehen (Spinflip). Die dafür aufgewendete Energie lässt sich messen und gibt Auskunft über die unmittelbare Umgebung der Elektronen.
Am Computer zusammengesetzt, ergeben sich aus diesen Informationen detaillierte Strukturkarten der Solarzelle einschließlich der Materialfehler. In der Regel gilt: je höher das angelegte Magnetfeld und je höher die Frequenz der verwendeten Strahlung, umso genauer werden die gewonnenen Strukturinformationen.
Allerdings steigt der Preis eines Spektrometers ebenfalls drastisch an, je höher die Magnetfelder werden. Und nicht nur das. Auch der Bau solcher Geräte mit der entsprechenden Genauigkeit ist eine technische Herausforderung.
###newpage###
Den Rekord für ein kommerziell erhältliches EPR-Spektrometer hält ein kürzlich entwickeltes Gerät der in Karlsruhe ansässigen Firma Bruker BIOSpin, dessen Magnetfeld mit einer Stärke von 12 Tesla etwa 30-mal höher ist als bei herkömmlichen Spektrometern. Eine weitere Besonderheit des Geräts ist die verwendete Strahlungsquelle, denn die Proben können mit Frequenzen zwischen Mikrowellen- und Infrarotlicht bestrahlt werden.
Spezielle Probenhalterungen für die EPR-Messung.
###newpage###
Charakterisierung der elektrischen Eigenschaften
Aufbauend auf den bisherigen Erfolgen von EPR-Solar und ihren wissenschaftlichen Vorarbeiten konnten die HZB-Wissenschaftler das BMBF überzeugen, das Berliner Institut mit diesem Gerät auszustatten und hier den Netzwerkpartnern zur Verfügung zu stellen. Erst kürzlich haben Schnegg und seine Kollegen einen speziellen Messplatz am Synchrotronspeicherring BESSY II aufgebaut, wo EPR-Messungen bei unterschiedlichen Frequenzen im Terahertz-Bereich durchgeführt werden können.
Das neue Bruker-Gerät liefert hochfrequente Strahlung bei 263 Gigahertz (0,263 Terahertz). Damit können EPR-Spektren in diesem Frequenzbereich mit höchster Genauigkeit aufgenommen werden. Somit liefert das BESSY-Gerät den breiten Überblick, während das neue Spektrometer einzelne Details der Energielandschaft hochaufgelöst darstellen kann. "Durch die unerreichten Eigenschaften des neuen Geräts und die Kombination mit dem Terahertz-Messplatz bei BESSY II wird das HZB seine Führungsposition bei der Entwicklung modernster EPR-Methoden für die Solarzellenforschung weiter ausbauen", so Alexander Schnegg.
Das Helmholtz-Zentrum Berlin für Materialien und Energie
Das HZB betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand.
###newpage###
Charakterisierung der elektrischen Eigenschaften einer Silicium Dünnschicht-Solarzelle.
Bilder: B. Schurian/HZB
Kontakt:
Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), D-12489 Berlin
Tel. +49 30 80620, Fax +49 30 80621333
info@helmholtz-berlin.de, www.helmholtz-berlin.de